Autor: |
Nguyen Cong, Thai Doan, Stefan Siegmund, Hoang Tuan |
Jazyk: |
angličtina |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2016, Iss 39, Pp 1-13 (2016) |
Druh dokumentu: |
article |
ISSN: |
1417-3875 |
DOI: |
10.14232/ejqtde.2016.1.39 |
Popis: |
We prove the theorem of linearized asymptotic stability for fractional differential equations. More precisely, we show that an equilibrium of a nonlinear Caputo fractional differential equation is asymptotically stable if its linearization at the equilibrium is asymptotically stable. As a consequence we extend Lyapunov's first method to fractional differential equations by proving that if the spectrum of the linearization is contained in the sector $\{\lambda \in \mathbb{C} : |\arg \lambda| > \frac{\alpha \pi}{2}\}$ where $\alpha > 0$ denotes the order of the fractional differential equation, then the equilibrium of the nonlinear fractional differential equation is asymptotically stable. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|