Autor: |
Jiangchuan Liu, Mengchen Zhang, Qinke Tang, Yingyan Zhao, Jiguang Zhang, Yunfeng Zhu, Yana Liu, Xiaohui Hu, Liquan Li |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Advanced Science, Vol 9, Iss 21, Pp n/a-n/a (2022) |
Druh dokumentu: |
article |
ISSN: |
2198-3844 |
DOI: |
10.1002/advs.202201428 |
Popis: |
Abstract Light metal hydrolysis for hydrogen supply is well suited for portable hydrogen fuel cells. The addition of catalysts can substantially aid Mg hydrolysis. However, there is a lack of clear catalytic mechanism to guide the design of efficient catalysts. In this work, the essential role of nanosized catalyst (Ni3Fe/rGO) in activating micro‐sized Mg with ultra‐rapid hydrolysis process is investigated for the first time. Here, an unprecedented content of 0.2 wt% Ni3Fe/rGO added Mg can release 812.4 mL g−1 hydrogen in just 60 s at 30 °C. Notably, an impressive performance with a hydrogen yield of 826.4 mL g−1 at 0 °C in only 30 s is achieved by the Mg‐2 wt% Ni3Fe/rGO, extending the temperature range for practical applications of hydrolysis. Moreover, the four catalysts (Ni3Fe/rGO, Ni3Fe, Ni/rGO, Fe/rGO) are designed to reveal the influence of composition, particle size, and dispersion on catalytic behavior. Theoretical studies corroborate that the addition of Ni3Fe/rGO accelerates the electron transfer and coupling processes and further provides a lower energy barrier diffusion path for hydrogen. Thus, a mechanism concerning the catalyst as migration relay is proposed. This work offers guidelines designing high‐performance catalysts especially for activating the hydrolysis of micro‐sized light weight metals. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|