Autor: |
Thomas W. Crutchett, Katrina R. Bornt |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
MethodsX, Vol 12, Iss , Pp 102638- (2024) |
Druh dokumentu: |
article |
ISSN: |
2215-0161 |
DOI: |
10.1016/j.mex.2024.102638 |
Popis: |
Density separation can isolate microplastics from environmental samples containing sediment. Typically, a solution added to sediment causes microplastics with lower densities to float. The solution of choice can influence the recovery of different particles since denser solutions can separate a greater range of microplastics. The equipment and procedural complexity further influence density separation protocols and microplastic recoveries. Zinc chloride (ZnCl2) is frequently used to isolate high-density polymers from environmental samples yet is rarely validated with simple, well-described protocols. A simple overflow method using ZnCl2 to isolate microplastics from sediment samples is described following a 3-step process: (1. Separation) ZnCl2 (1.7 g cm−3) solution is added to a sediment sample, agitated then settled; (2. Overflows) buoyant particles at the surface of the solution are overflowed twice; (3. Filtration) the overflowed solution is filtered. In a validation experiment with polyamide, rubber, polyvinyl chloride and polyethylene terephthalate/polyester, the mean recovery using this overflow method was 96 % ± 0.6 (standard error). This overflow density separation method proposes an accessible and reliable protocol to extract medium and high-density microplastics. • Microplastic separation with concentrated ZnCl2 solution • Simple overflow of buoyant particles • Reliable extraction of microplastics |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|