Autor: |
Qinxu Ding, Patricia J. Y. Wong |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-27 (2020) |
Druh dokumentu: |
article |
ISSN: |
1687-1847 |
DOI: |
10.1186/s13662-020-03021-0 |
Popis: |
Abstract In this paper, we shall solve a time-fractional nonlinear Schrödinger equation by using the quintic non-polynomial spline and the L1 formula. The unconditional stability, unique solvability and convergence of our numerical scheme are proved by the Fourier method. It is shown that our method is sixth order accurate in the spatial dimension and ( 2 − γ ) $(2-\gamma )$ th order accurate in the temporal dimension, where γ is the fractional order. The efficiency of the proposed numerical scheme is further illustrated by numerical experiments, meanwhile the simulation results indicate better performance over previous work in the literature. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|