Genuine modified Bernstein–Durrmeyer operators

Autor: Syed Abdul Mohiuddine, Tuncer Acar, Mohammed A. Alghamdi
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-13 (2018)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-018-1693-z
Popis: Abstract The present paper deals with genuine Bernstein–Durrmeyer operators which preserve some certain functions. The rate of convergence of new operators via a Peetre K $\mathcal{K}$-functional and corresponding modulus of smoothness, quantitative Voronovskaya type theorem and Grüss–Voronovskaya type theorem in quantitative mean are discussed. Finally, the graphic for new operators with special cases and for some values of n is also presented.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje