Autor: |
Ya Tian, Zhongyuan Zheng, Xi Wang, Shuzhi Liu, Liwei Gu, Jing Mu, Xiaojun Zheng, Yujie Li, Shuo Shen |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Journal of Nanobiotechnology, Vol 20, Iss 1, Pp 1-22 (2022) |
Druh dokumentu: |
article |
ISSN: |
1477-3155 |
DOI: |
10.1186/s12951-022-01493-8 |
Popis: |
Abstract Cerebral malaria (CM) is a life-threatening neurological complication caused by Plasmodium falciparum. About 627,000 patients died of malaria in 2020. Currently, artemisinin and its derivatives are the front-line drugs used for the treatment of cerebral malaria. However, they cannot target the brain, which decreases their effectiveness. Therefore, increasing their ability to target the brain by the nano-delivery system with brain-targeted materials is of great significance for enhancing the effects of antimalarials and reducing CM mortality. This study used glucose transporter 1 (GLUT1) on the blood–brain barrier as a target for a synthesized cholesterol-undecanoic acid–glucose conjugate. The molecular dynamics simulation found that the structural fragment of glucose in the conjugate faced the outside the phospholipid bilayers, which was conducive to the recognition of brain-targeted liposomes by GLUT1. The fluorescence intensity of the brain-targeted liposomes (na-ATS/TMP@lipoBX) in the mouse brain was significantly higher than that of the non-targeted liposomes (na-ATS/TMP@lipo) in vivo (P |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|