Simulating hydraulic fracturing processes in laboratory-scale geological media using three-dimensional TOUGH-RBSN

Autor: Daisuke Asahina, Pengzhi Pan, Kimikazu Tsusaka, Mikio Takeda, John E. Bolander
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Rock Mechanics and Geotechnical Engineering, Vol 10, Iss 6, Pp 1102-1111 (2018)
Druh dokumentu: article
ISSN: 1674-7755
DOI: 10.1016/j.jrmge.2018.09.001
Popis: In this context, recent developments in the coupled three-dimensional (3D) hydro-mechanical (HM) simulation tool TOUGH-RBSN are presented. This tool is used to model hydraulic fracture in geological media, as observed in laboratory-scale tests. The TOUGH-RBSN simulator is based on the effective linking of two numerical methods: TOUGH2, a finite volume method for simulating mass transport within a permeable medium; and a lattice model based on the rigid-body-spring network (RBSN) concept. The method relies on a Voronoi-based discretization technique that can represent fracture development within a permeable rock matrix. The simulator provides two-way coupling of HM processes, including fluid pressure-induced fracture and fracture-assisted flow. We first present the basic capabilities of the modeling approach using two example applications, i.e. permeability evolution under compression deformation, and analyses of a static fracturing simulation. Thereafter, the model is used to simulate laboratory tests of hydraulic fracturing in granite. In most respects, the simulation results meet expectations with respect to permeability evolution and fracturing patterns. It can be seen that the evolution of injection pressure associated with the simulated fracture developments is strongly affected by fluid viscosity. Keywords: Hydraulic fracture, Crack opening, TOUGH, Rigid-body-spring network (RBSN), Permeability, Injection pressure, Fluid viscosity, Hydro-mechanical (HM) processes
Databáze: Directory of Open Access Journals