Autor: |
Heithem Ben Amara, Diana C. Martinez, Furqan A. Shah, Anna Johansson Loo, Lena Emanuelsson, Birgitta Norlindh, Regine Willumeit-Römer, Tomasz Plocinski, Wojciech Swieszkowski, Anders Palmquist, Omar Omar, Peter Thomsen |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Bioactive Materials, Vol 26, Iss , Pp 353-369 (2023) |
Druh dokumentu: |
article |
ISSN: |
2452-199X |
DOI: |
10.1016/j.bioactmat.2023.02.014 |
Popis: |
Implants made of magnesium (Mg) are increasingly employed in patients to achieve osteosynthesis while degrading in situ. Since Mg implants and Mg2+ have been suggested to possess anti-inflammatory properties, the clinically observed soft tissue inflammation around Mg implants is enigmatic. Here, using a rat soft tissue model and a 1–28 d observation period, we determined the temporo-spatial cell distribution and behavior in relation to sequential changes of pure Mg implant surface properties and Mg2+ release. Compared to nondegradable titanium (Ti) implants, Mg degradation exacerbated initial inflammation. Release of Mg degradation products at the tissue-implant interface, culminating at 3 d, actively initiated chemotaxis and upregulated mRNA and protein immunomodulatory markers, particularly inducible nitric oxide synthase and toll-like receptor-4 up to 6 d, yet without a cytotoxic effect. Increased vascularization was demonstrated morphologically, preceded by high expression of vascular endothelial growth factor. The transition to appropriate tissue repair coincided with implant surface enrichment of Ca and P and reduced peri-implant Mg2+ concentration. Mg implants revealed a thinner fibrous encapsulation compared with Ti. The detailed understanding of the relationship between Mg material properties and the spatial and time-resolved cellular processes provides a basis for the interpretation of clinical observations and future tailoring of Mg implants. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|