Autor: |
Shilpa Dang, Jessica Emily Antono, Igor Kagan, Arezoo Pooresmaeili |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Communications Biology, Vol 7, Iss 1, Pp 1-19 (2024) |
Druh dokumentu: |
article |
ISSN: |
2399-3642 |
DOI: |
10.1038/s42003-024-07253-8 |
Popis: |
Abstract Neuroeconomics theories propose that the value associated with diverse rewards or reward-predicting stimuli is encoded along a common reference scale, irrespective of their sensory properties. However, in a dynamic environment with changing stimulus-reward pairings, the brain must also represent the sensory features of rewarding stimuli. The mechanism by which the brain balances these needs—deriving a common reference scale for valuation while maintaining sensitivity to sensory contexts—remains unclear. To investigate this, we conducted an fMRI study with human participants engaged in a dynamic foraging task, which required integrating the reward history of auditory or visual choice options and updating the subjective value for each sensory modality. Univariate fMRI analysis revealed modality-specific value representations in the orbitofrontal cortex (OFC) and modality-general value representations in the ventromedial prefrontal cortex (vmPFC), confirmed by an exploratory multivariate pattern classification approach. Crucially, modality-specific value representations were absent when the task involved instruction-based rather than value-based choices. Effective connectivity analysis showed that modality-specific value representations emerged from selective bidirectional interactions across the auditory and visual sensory cortices, the corresponding OFC clusters, and the vmPFC. These results illustrate how the brain enables a valuation process that is sensitive to the sensory context of rewarding stimuli. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|