Autor: |
Michela Corsini, Cosetta Ravelli, Elisabetta Grillo, Mattia Domenichini, Stefania Mitola |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Cells, Vol 13, Iss 16, p 1346 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-4409 |
DOI: |
10.3390/cells13161346 |
Popis: |
Background: Recently, the substitution R1051Q in VEGFR2 has been described as a cancer-associated “gain of function” mutation. VEGFR2R1051Q phosphorylation is ligand-independent and enhances the activation of intracellular pathways and cell growth both in vitro and in vivo. In cancer, this mutation is found in heterozygosity, suggesting that an interaction between VEGFR2R1051Q and VEGFR2WT may occur and could explain, at least in part, how VEGFR2R1051Q acts to promote VEGFR2 signaling. Despite this, the biochemical/biophysical mechanism of the activation of VEGFR2R1051Q remains poorly understood. On these bases, the aim of our study is to address how VEGFR2R1051Q influences the biophysical behavior (dimerization and membrane dynamics) of the co-expressed VEGFR2WT. Methods: We employed quantitative FLIM/FRET and FRAP imaging techniques using CHO cells co-transfected with the two forms of VEGFR2 to mimic heterozygosity. Results: Membrane protein biotinylation reveals that VEGFR2WT is more exposed on the cell membrane with respect to VEGFR2R1051Q. The imaging analyses show the ability of VEGFR2WT to form heterodimers with VEGFR2R1051Q and this interaction alters its membrane dynamics. Indeed, when the co-expression of VEGFR2WT/VEGFR2R1051Q occurs, VEGFR2WT shows reduced lateral motility and a minor pool of mobile fraction. Conclusions: This study demonstrates that active VEGFR2R1051Q can affect the membrane behavior of the VEGFR2WT. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|