Autor: |
Xue Zhang, Peng Liu, Christie Zhang, Direkrit Chiewchengchol, Fan Zhao, Hongbo Yu, Jingyu Li, Hiroto Kambara, Kate Y. Luo, Arvind Venkataraman, Ziling Zhou, Weidong Zhou, Haiyan Zhu, Li Zhao, Jiro Sakai, Yuanyuan Chen, Ye-Shih Ho, Besnik Bajrami, Bing Xu, Leslie E. Silberstein, Tao Cheng, Yuanfu Xu, Yuehai Ke, Hongbo R. Luo |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 20, Iss 1, Pp 224-235 (2017) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2017.05.070 |
Popis: |
Reactive oxygen species (ROS)-induced cysteine S-glutathionylation is an important posttranslational modification (PTM) that controls a wide range of intracellular protein activities. However, whether physiological ROS can modulate the function of extracellular components via S-glutathionylation is unknown. Using a screening approach, we identified ROS-mediated cysteine S-glutathionylation on several extracellular cytokines. Glutathionylation of the highly conserved Cys-188 in IL-1β positively regulates its bioactivity by preventing its ROS-induced irreversible oxidation, including sulfinic acid and sulfonic acid formation. We show this mechanism protects IL-1β from deactivation by ROS in an in vivo system of irradiation-induced bone marrow (BM) injury. Glutaredoxin 1 (Grx1), an enzyme that catalyzes deglutathionylation, was present and active in the extracellular space in serum and the BM, physiologically regulating IL-1β glutathionylation and bioactivity. Collectively, we identify cysteine S-glutathionylation as a cytokine regulatory mechanism that could be a therapeutic target in the treatment of various infectious and inflammatory diseases. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|