Multi-shockpeakons for the stochastic Degasperis-Procesi equation

Autor: Lynnyngs K. Arruda
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Electronic Research Archive, Vol 30, Iss 6, Pp 2303-2320 (2022)
Druh dokumentu: article
ISSN: 2688-1594
DOI: 10.3934/era.2022117?viewType=HTML
Popis: The deterministic Degasperis-Procesi equation admits weak multi-shockpeakon solutions of the form $ u(x, t) = \sum\limits_{i = 1}^nm_i(t)e^{-|x-x_i(t)|}-\sum\limits_{i = 1}^ns_i(t){\rm sgn}(x-x_i(t))e^{-|x-x_i(t)|}, $ where $ {\rm sgn}(x) $ denotes the signum function with $ {\rm sgn}(0) = 0 $, if and only if the time-dependent parameters $ x_i(t) $ (positions), $ m_i(t) $ (momenta) and $ s_i(t) $ (shock strengths) satisfy a system of $ 3n $ ordinary differential equations. We prove that a stochastic perturbation of the Degasperis-Procesi equation also has weak multi-shockpeakon solutions if and only if the positions, momenta and shock strengths obey a system of $ 3n $ stochastic differential equations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje