Autor: |
Somayeh Fani, Firouzeh Dehghan, Hamed Karimian, Kong Mun Lo, Siyamak Ebrahimi Nigjeh, Yeap Swee Keong, Rahman Soori, Kit May Chow, Behnam Kamalidehghan, Hapipah Mohd Ali, Najihah Mohd Hashim |
Jazyk: |
angličtina |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 11, Iss 8, p e0160836 (2016) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0160836 |
Popis: |
Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|