Autor: |
Antonio Cuesta-Vargas, Jena Buchan, Bella Pajares, Emilio Alba, Cristina Roldan-Jiménez |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 14, Iss 4, p e0215662 (2019) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0215662 |
Popis: |
Although breast cancer mortality is decreasing, morbidity following treatment remains a significant issue, as patients face symptoms such as cancer-related fatigue (CRF). The aim of the present study is to develop a classification system that monitors fatigue via integration of an objective clinical assessment with patient self-report. Forty-three women participated in this research. Participants were post-treatment breast cancer survivors who had been surgically treated for their primary tumour with no evidence of neoplastic disease at the time of recruitment. Self-perceived fatigue was assessed with the Spanish version of the Piper Fatigue Scale-Revised (R-PFS). Objective fatigue was assessed by the 30 second Sit-to-Stand (30-STS) test. Confirmatory factor analysis was done with Maximum Likelihood Extraction (MLE). Internal consistency was obtained by Cronbach's α coefficients. Bivariate correlation showed that 30-STS performance was negatively-inversely associated with R-PFS. The MANOVA model explained 54.3% of 30-STS performance variance. Using normalized scores from the MLE, a classification system was developed based on the quartiles. This study integrated objective and subjective measures of fatigue to better allow classification of patient CRF experience. Results allowed development of a classification index to classify CRF severity in breast cancer survivors using the relationship between 30-STS and R-PFS scores. Future research must consider the patient-perceived and clinically measurable components of CRF to better understand this multidimensional issue. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|