Influence of glenoid wear pattern on glenoid component placement accuracy in shoulder arthroplasty

Autor: Kevin A. Hao, BS, Christopher D. Sutton, MD, Thomas W. Wright, MD, Bradley S. Schoch, MD, Jonathan O. Wright, MD, Aimee M. Struk, MEd, ATC, Edward T. Haupt, MD, Thiago Leonor, BS, Joseph J. King, MD
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: JSES International, Vol 6, Iss 2, Pp 200-208 (2022)
Druh dokumentu: article
ISSN: 2666-6383
DOI: 10.1016/j.jseint.2021.11.021
Popis: Background: Accurate glenoid component placement in shoulder arthroplasty is often difficult even with the use of preoperative planning. Computer navigation and patient-specific guides increase component placement accuracy, but which patients benefit most is unknown. Our purpose was to assess surgeons' accuracy in placing a glenoid component in vivo using 3-dimensional preoperative planning and standard instruments among various glenoid wear patterns. Methods: We conducted a retrospective review of 170 primary anatomic total shoulder arthroplasty (aTSA) and reverse total shoulder arthroplasty (rTSA) performed at a single institution. Commercially available preoperative planning software was used in all arthroplasties with multiplanar 2-dimensional computed tomography and a 3-dimensional implant overlay. After registration of intraoperative bony landmarks to the navigation system, participating surgeons with knowledge of the preoperative plan were blinded to the computer screen and attempted to implement their preoperative plan by simulating placement of a central-axis glenoid guide pin. Two hundred thirty-three screenshots of surgeon's simulated guide pin placement were included. Glenoid displacement, error in version and inclination, and overall malposition from the preoperatively planned target point were stratified by posterior wear status (with [Walch B2 or B3] or without [A1, A2, or B1]) and Walch classification (A1, A2, B1, B2, or B3). The glenoid component was considered malpositioned when version or inclination errors exceeded 10° or the starting point displacement exceeded 4 mm. Results: For rTSA, errors in version were greater for glenoids with posterior wear compared with those without (8.1° ± 5.6° vs. 4.7° ± 4.0°; P 10° compared with those without (31% vs. 8%; P
Databáze: Directory of Open Access Journals