Autor: |
Navneet Kaur, Bivek Gupta, Amit K. Verma, Ravi P. Agarwal |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 15, p 2379 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12152379 |
Popis: |
In this article, we construct a Boehmian space using the convolution theorem that contains the offset linear canonical Stockwell transforms (OLCST) of all square-integrable Boehmians. It is also proven that the extended OLCST on square-integrable Boehmians is consistent with the traditional OLCST. Furthermore, it is one-to-one, linear, and continuous with respect to Δ-convergence as well as Δ-convergence. Subsequently, we introduce a discrete variant of the OLCST. Ultimately, we broaden the application of the presented work by examining the OLCST within the domain of almost periodic functions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|