Autor: |
Alberto Alonso Izquierdo, Miguel Ángel González León, Marina de la Torre Mayado |
Jazyk: |
angličtina |
Rok vydání: |
2010 |
Předmět: |
|
Zdroj: |
Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 017 (2010) |
Druh dokumentu: |
article |
ISSN: |
1815-0659 |
DOI: |
10.3842/SIGMA.2010.017 |
Popis: |
The solitary waves of massive (1+1)-dimensional nonlinear S^N-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive N-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|