Solitary Waves in Massive Nonlinear S^N-Sigma Models

Autor: Alberto Alonso Izquierdo, Miguel Ángel González León, Marina de la Torre Mayado
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Symmetry, Integrability and Geometry: Methods and Applications, Vol 6, p 017 (2010)
Druh dokumentu: article
ISSN: 1815-0659
DOI: 10.3842/SIGMA.2010.017
Popis: The solitary waves of massive (1+1)-dimensional nonlinear S^N-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive N-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem.
Databáze: Directory of Open Access Journals