Popis: |
In recent times, there has been growing interest in nanoparticles (NPs) synthesized through biological means due to their ease of production and their potential applications in the field of biology. This study presents an environmentally friendly method for the biogenic synthesis of silver nanoparticles (AgNPs) using the leaf extract of Cymodocea serrulata as both a reducing agent and a capping agent. Various physico-chemical and microscopic techniques were employed to comprehensively characterize the biogenically produced AgNPs. The results of these characterization studies confirmed the formation of spherical, stable, and crystalline AgNPs with an average size of 30.5 ± 2.5 nm. Furthermore, the antibacterial assessment revealed the remarkable antibacterial properties of these biogenically synthesized Ag NPs, even at exceedingly low concentrations ranging from 50 to 100 μg/mL. The IC50 values for the biogenically synthesized AgNPs against different human cancer cell lines, such as A549, MDA-MB-231, HepG2, and MCF-7, were determined to be 93.4 ± 4.5, 82.5 ± 3.7, 87.6 ± 4.1, and 57.3 ± 2.5 μg/mL, respectively. Most notably, the biogenically synthesized Ag NPs exhibited significant anti-inflammatory activity, as evidenced by their IC50 value of 30.08 ± 1.4 μg/mL, as assessed through the HRBC membrane stabilization method. These in vitro findings strongly suggest that AgNPs fabricated through biogenic processes using Cymodocea serrulata leaf extract hold promise as potential therapeutic candidates for combating bacterial infections, cancer, and inflammatory conditions. |