Vegetation Classification and Evaluation of Yancheng Coastal Wetlands Based on Random Forest Algorithm from Sentinel-2 Images

Autor: Yongjun Wang, Shuanggen Jin, Gino Dardanelli
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Remote Sensing, Vol 16, Iss 7, p 1124 (2024)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs16071124
Popis: The identification of wetland vegetation is essential for environmental protection and management as well as for monitoring wetlands’ health and assessing ecosystem services. However, some limitations on vegetation classification may be related to remote sensing technology, confusion between plant species, and challenges related to inadequate data accuracy. In this paper, vegetation classification in the Yancheng Coastal Wetlands is studied and evaluated from Sentinel-2 images based on a random forest algorithm. Based on consistent time series from remote sensing observations, the characteristic patterns of the Yancheng Coastal Wetlands were better captured. Firstly, the spectral features, vegetation indices, and phenological characteristics were extracted from remote sensing images, and classification products were obtained by constructing a dense time series using a dataset based on Sentinel-2 images in Google Earth Engine (GEE). Then, remote sensing classification products based on the random forest machine learning algorithm were obtained, with an overall accuracy of 95.64% and kappa coefficient of 0.94. Four indicators (POP, SOS, NDVIre, and B12) were the main contributors to the importance of the weight analysis for all features. Comparative experiments were conducted with different classification features. The results show that the method proposed in this paper has better classification.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje