Popis: |
In patients with cerebrotendinous xanthomatosis (CTX), diminished cholic acid production is associated with incomplete oxidation of the cholesterol side chain and the excretion of C(25)-hydroxy bile alcohols. The aims of this investigation were 1) to provide quantitative information on the pool size and production rate of chenodeoxycholic acid by the isotope dilution technique; and 2) to investigate the possible existence of a block in chenodeoxycholic acid synthesis and explain the absence of chenodeoxycholic acid precursors in CTX. After the injection of [24-(14)C]chenodeoxycholic acid, measurements of chenodeoxycholic acid pool size and production rate in a CTX subject were, respectively, 1/20 and 1/6 as great as controls. Further, three potential precursors of chenodeoxycholic acid, namely [G-(3)H]7alpha-hydroxy-4-cholesten-3-one, [G-(3)H]5beta-cholestane-3alpha,7alpha,25-triol, and [G-(3)H]5beta-cholestane-3alpha,7alpha,26-triol, were administered to the CTX and control subjects and the specific activity curves of [G-(3)H]cholic acid and [G-(3)H]chenodeoxycholic acid were constructed and compared. In the control subjects, the two bile acids decayed exponentially, but in the CTX patient maximum specific activities were abnormally delayed, indicating the hindered transformation of precursor into bile acid. These results show that chenodeoxycholic acid synthesis is small in CTX and that the conversion of 7alpha-hydroxy-4-cholesten-3-one, 5beta-cholestane-3alpha,7alpha,25-triol, and 5beta-cholestane-3alpha,7alpha,26-triol to both chenodeoxycholic acid and cholic acid were similarly impaired. |