Autor: |
C. Aguilar, F. San Martín, C. Martínez, B. Cámara, F. Claverías, A. Undabarrena, M. Sancy, V. Salinas, L. Muñoz |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Journal of Materials Research and Technology, Vol 24, Iss , Pp 8735-8753 (2023) |
Druh dokumentu: |
article |
ISSN: |
2238-7854 |
DOI: |
10.1016/j.jmrt.2023.05.115 |
Popis: |
This study investigates the potential of Ti–Ta–Sn alloys for biomedical applications due to their excellent mechanical properties and biocompatibility, with a particular focus on their use in trabecular bone replacement. This work aims to analyze the influence that of Sn has on the mechanical properties and antibacterial response of α−β ternary Ti–13Ta–xSn (x:3, 6, 9, and 12 at.%) alloy foams. The Ti-based alloys were designed considering three aspects; (i) final microstructure, (ii) alloying element types, and (iii) thermodynamics while using MAAT and ThermoCalc software. The alloys were obtained by mechanical alloying, with used milling times being 30 h for Ti–13Ta–3Sn, 10 h for Ti–13Ta–6Sn, 10 h for Ti–13Ta–9Sn, and 15 h for Ti–13Ta–12Sn. The foams were obtained using NaCl as the space holder (50 v/v% porosity) and consolidated by a hot pressing method at 780 °C for 30 min, applying a load of 40 MPa. Both the Staphylococcus aureus ATCC 6538 strain and Escherichia coli ATCC 8739 strain were used to evaluate the antibacterial responses of Ti-based alloy foams. The Ti-based alloy foams were composed mostly by a mix of α and β-phases. The metallic foams exhibited relative homogeneous pore distribution with a size between 100 and 450 μm and having an average porosity slightly higher than 50%. The samples showed elastic modulus values between 1 and 2 GPa, compressive yield strengths over 150 MPa, and microhardness over 450 HV. All Ti-based alloy foams showed no antibacterial activity nor bacterial adhesion, indicating that there is bacterial adhesion inhibition. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|