A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations

Autor: Suparat Kesornprom, Papatsara Inkrong, Uamporn Witthayarat, Prasit Cholamjiak
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 7, Pp 18841-18859 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024917?viewType=HTML
Popis: In this study, we suggest a new class of forward-backward (FB) algorithms designed to solve convex minimization problems. Our method incorporates a linesearch technique, eliminating the need to choose Lipschitz assumptions explicitly. Additionally, we apply double inertial extrapolations to enhance the algorithm's convergence rate. We establish a weak convergence theorem under some mild conditions. Furthermore, we perform numerical tests, and apply the algorithm to image restoration and data classification as a practical application. The experimental results show our approach's superior performance and effectiveness, surpassing some existing methods in the literature.
Databáze: Directory of Open Access Journals