Vector Decomposition of Elastic Seismic Wavefields Using Self-Attention Deep Convolutional Generative Adversarial Networks

Autor: Wei Liu, Junxing Cao, Jiachun You, Haibo Wang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Applied Sciences, Vol 13, Iss 16, p 9440 (2023)
Druh dokumentu: article
ISSN: 13169440
2076-3417
DOI: 10.3390/app13169440
Popis: Vector decomposition of P- and S-wave modes from elastic seismic wavefields is a key step in elastic reverse-time migration (ERTM) to effectively improve the multi-wave imaging accuracy. Most previously developed methods based on the apparent velocities or the polarization characteristics of different wave modes are unable to accurately achieve the vector decomposition of P- and S-wave modes. To effectively overcome the shortcomings of conventional methods, we develop a vector decomposition method of P- and S-wave modes using self-attention deep convolutional generative adversarial networks (SADCGANs) to effectively separate the horizontal and vertical components of P- and S-wave modes from elastic seismic wavefields and accurately preserve their amplitude and phase characteristics for isotropic elastic media. For an elastic model, we use many time slices for a given source position to train the neural network, and use other time slices not in this training dataset to test the neural network. Numerical examples of different models demonstrate the effectiveness and feasibility of our developed method and indicate that it provides an effective intelligent data-driven vector decomposition method of P- and S-wave modes.
Databáze: Directory of Open Access Journals