Strong edge geodetic problem in networks

Autor: Manuel Paul, Klavžar Sandi, Xavier Antony, Arokiaraj Andrew, Thomas Elizabeth
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Open Mathematics, Vol 15, Iss 1, Pp 1225-1235 (2017)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2017-0101
Popis: Geodesic covering problems form a widely researched topic in graph theory. One such problem is geodetic problem introduced by Harary et al. [Math. Comput. Modelling, 1993, 17, 89-95]. Here we introduce a variation of the geodetic problem and call it strong edge geodetic problem. We illustrate how this problem is evolved from social transport networks. It is shown that the strong edge geodetic problem is NP-complete. We derive lower and upper bounds for the strong edge geodetic number and demonstrate that these bounds are sharp. We produce exact solutions for trees, block graphs, silicate networks and glued binary trees without randomization.
Databáze: Directory of Open Access Journals