Co-unit graphs associated to ring of integers modulo n
Autor: | Pirzada S., Altaf Aaqib |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Acta Universitatis Sapientiae: Mathematica, Vol 14, Iss 2, Pp 308-316 (2022) |
Druh dokumentu: | article |
ISSN: | 2066-7752 |
DOI: | 10.2478/ausm-2022-0020 |
Popis: | Let R be a finite commutative ring. We define a co-unit graph, associated to a ring R, denoted by Gnu(R) with vertex set V(Gnu(R)) = U(R), where U(R) is the set of units of R, and two distinct vertices x, y of U(R) being adjacent if and only if x + y ∉ / U(R). In this paper, we investigate some basic properties of Gnu(R), where R is the ring of integers modulo n, for different values of n. We find the domination number, clique number and the girth of Gnu(R). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |