Autor: |
Ping-Huan Kuo, Hsin-Chuan Chen, Chiou-Jye Huang |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Energies, Vol 11, Iss 6, p 1374 (2018) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en11061374 |
Popis: |
The power generation potential of a solar photovoltaic (PV) power generation system is closely related to the on-site solar radiation, and sunshine conditions are an important reference index for evaluating the installation of a solar PV system. Meanwhile, the long-term operation and maintenance of a PV system needs solar radiation information as a reference for system performance evaluation. Obtaining solar radiation information through the installation of irradiation monitoring stations is often very costly, and the cost of sustaining the reliability of the monitoring system, Internet stability and subsequent operation and maintenance can often be alarming. Therefore, the establishment of a solar radiation estimation model can reduce the installation of monitoring stations and decrease the cost of obtaining solar radiation information. In this study, we use an inverse distance weighting algorithm to establish the solar radiation estimation model. The model was built by obtaining information from 20 solar radiation monitoring stations in central and southern Taiwan, and field verification was implemented at Yuan Chang Township town hall and the Tainan Liujia campus. Furthermore, a full comparison between Inverse Distance Weighting (IDW) and the Kriging method is also given in this paper. The estimation results demonstrate the performance of the IDW method. In the experiment, the performance of the IDW method is better than the Ordinary Kriging (OK) method. The Mean Absolute Percentage Error (MAPE) values of the solar radiation estimation model by IDW at the two field verifications were 4.30% and 3.71%, respectively. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|