Popis: |
Resistance-Nodulation-Division (RND) family pumps are responsible for producing multidrug resistance in Escherichia coli; however, there has been little study of targeted inhibitors of RNDs. In the present study, we investigated the inhibition of RND pumps by artesunate (AS) in E. coli, and further investigated the mechanism with respect to MarA, a regulator of RNDs. Although AS had no direct antibacterial effect, it showed a synergistic effect in combination with β-lactams against E. coli ATCC35218 in vitro and in vivo, suggesting it possesses antibacterial enhancement activity. Notably, AS, alone or in combination with β-lactams, downregulated the mRNA expression levels of marA, soxS, and rob, known as the marA-soxS-rob regulon, which then decreased the expression levels of RNDs, thereby increased ampicillin accumulation within ATCC35218. Using gene-deletion strains, we found that the antibacterial sensitization effect of AS persisted in wildtype bacteria, but was completely lost in the strain lacking marA, and decreased in the strain lacking soxS or rob, suggesting marA plays a crucial role in the sensitization of AS. Critically, we showed that AS inhibited the binding of MarA to the promoter of marA itself, not acrB, resulting in decreased mRNA expression of both acrB and marA. Mechanistically, we found AS directly bound to the central cavity of MarA through the R59 and K62 residues, and thus altered the charge distribution of MarA to interrupt the recognition between MarA and its promoter. We concluded that AS interrupts the self-transcriptional activation of MarA, thereby inhibits MarA-dependent mRNA expression of marA, acrAB, and tolC, and also certain other RNDs and regulatory genes related to MarA. Therefore, AS is a novel inhibitor of RND pumps that acts on the regulator MarA. |