Providing Invariance to Disturbing Effects in Rail Lines

Autor: Evgeniy M. Tarasov, Dmitry V. Zheleznov, Nicolay N. Vasin, Anna E. Tarasova
Jazyk: English<br />Russian
Rok vydání: 2019
Předmět:
Zdroj: Инженерные технологии и системы, Vol 29, Iss 2, Pp 152-168 (2019)
Druh dokumentu: article
ISSN: 2658-4123
2658-6525
DOI: 10.15507/2658-4123.029.201902.152-168
Popis: Introduction. The time interval systems for controlling train movement operated under the influence of significant industrial disturbances, interference from the electric current of traction rolling stocks, and significant climate changes that result in fluctuations of parameters of circuit elements. These factors lead to the appearance of internal disturbances. The fluctuations in a wide range of the conductivity of rail lines insulation are the main external disturbances leading to considerable changes of the informative parameter, the voltage at the output end of the rail line. At present, there are many methods for suppressing disturbances, which allow correcting fluctuations in the informative signal without deteriorating the quality of classification. The article deals with the problem of providing insensitivity of the output informative signal to the influence of disturbance by principles of coordinate compensation with a correcting link. Materials and Methods. To solve the problem, various methodologies of compensation for disturbances are considered in the paper; the method of coordinate compensation for disturbances at the input of a quadripole of rail lines is adopted as the main one. The equation of the transfer function of the correcting link is determined, assuming an indirect measurement of the input resistance of the rail line, which is a function of the conductivity of the insulation. Results. The article presents the results of the research of the invariant capabilities of the disturbance compensation principle. It is shown that disturbances compensation with a corrective link included at the input of a quadripole allows one to significantly reduce the dynamic range of the output informative signal change in each of the classes, i.e. classes have become more compact, and the quality of classification has become 5 times higher than in the absence of compensation of disturbances. Discussion and Conclusion. The results confirm the effectiveness of the proposed method for the coordinate compensation of disturbances in rail lines with an open circuit in the absence of the possibility for organizing feedback, a variable circuit in each of the classes of states, and the impossibility of creating a physical additional channel for the transmission of the disturbance. Using the proposed method in the construction of modern classifiers will significantly improve the stability of the functioning of train control systems; eliminate errors of the first kind, leading to unproductive idle train, and errors of the second kind, leading to accidents and crashes.
Databáze: Directory of Open Access Journals