Popis: |
Abstract Background A two-stage, self-cycling process for the production of bacteriophages was developed. The first stage, containing only the uninfected host bacterium, was operated under self-cycling fermentation (SCF) conditions. This automated method, using the derivative of the carbon dioxide evolution rate (CER) as the control parameter, led to the synchronization of the host bacterium. The second stage, containing both the host and the phage, was operated using self-cycling infection (SCI) with CER and CER-derived data as the control parameters. When each infection cycle was terminated, phages were harvested and a new infection cycle was initiated by adding host cells from the SCF (first stage). This was augmented with fresh medium and the small amount of phages left from the previous cycle initiated the next infection cycle. Both stages were operated independently, except for this short period of time when the SCF harvest was added to the SCI to initiate the next cycle. Results It was demonstrated that this mode of operation resulted in stable infection cycles if the growth of the host cells in the SCF was synchronized. The final phage titers obtained were reproducible among cycles and were as good as those obtained in batch productions performed under the same conditions (medium, temperature, initial multiplicity of infection, etc.). Moreover, phages obtained in different cycles showed no important difference in infectivity. Finally, it was shown that cell synchronization of the host cells in the first stage (SCF) not only maintained the volumetric productivity (phages per volume) but also led to higher specific productivity (phage per cell per hour) in the second stage (SCI). Conclusions Production of bacteriophage T4 in the semi-continuous, automated SCF/SCI system was efficient and reproducible from cycle to cycle. Synchronization of the host in the first stage prior to infection led to improvements in the specific productivity of phages in the second stage while maintaining the volumetric productivity. These results demonstrate the significant potential of this approach for both upstream and downstream process optimization. |