Existence and uniqueness of the weak solution for Keller-Segel model coupled with Boussinesq equations
Autor: | Slimani Ali, Bouzettouta Lamine, Guesmia Amar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Demonstratio Mathematica, Vol 54, Iss 1, Pp 558-575 (2021) |
Druh dokumentu: | article |
ISSN: | 2391-4661 2021-0027 |
DOI: | 10.1515/dema-2021-0027 |
Popis: | Keller-Segel chemotaxis model is described by a system of nonlinear partial differential equations: a convection diffusion equation for the cell density coupled with a reaction-diffusion equation for chemoattractant concentration. In this work, we study the phenomenon of Keller-Segel model coupled with Boussinesq equations. The main objective of this work is to study the global existence and uniqueness and boundedness of the weak solution for the problem, which is carried out by the Galerkin method. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |