Bellybutton: accessible and customizable deep-learning image segmentation

Autor: Sam Dillavou, Jesse M. Hanlan, Anthony T. Chieco, Hongyi Xiao, Sage Fulco, Kevin T. Turner, Douglas J. Durian
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-7 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-63906-y
Popis: Abstract The conversion of raw images into quantifiable data can be a major hurdle and time-sink in experimental research, and typically involves identifying region(s) of interest, a process known as segmentation. Machine learning tools for image segmentation are often specific to a set of tasks, such as tracking cells, or require substantial compute or coding knowledge to train and use. Here we introduce an easy-to-use (no coding required), image segmentation method, using a 15-layer convolutional neural network that can be trained on a laptop: Bellybutton. The algorithm trains on user-provided segmentation of example images, but, as we show, just one or even a sub-selection of one training image can be sufficient in some cases. We detail the machine learning method and give three use cases where Bellybutton correctly segments images despite substantial lighting, shape, size, focus, and/or structure variation across the regions(s) of interest. Instructions for easy download and use, with further details and the datasets used in this paper are available at pypi.org/project/Bellybuttonseg .
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje