Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry
Autor: | Jessica Bahout, Youcef Ouerdane, Hicham El Hamzaoui, Géraud Bouwmans, Mohamed Bouazaoui, Andy Cassez, Karen Baudelle, Rémi Habert, Adriana Morana, Aziz Boukenter, Sylvain Girard, Bruno Capoen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Cu+/Ce3+-co-doped silica glass
photoluminescence ionizing radiation radioluminescence dosimetry Technology Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
Zdroj: | Materials, Vol 13, Iss 11, p 2611 (2020) |
Druh dokumentu: | article |
ISSN: | 1996-1944 |
DOI: | 10.3390/ma13112611 |
Popis: | Optically activated glasses are essential to the development of new radiation detection systems. In this study, a bulk glassy rod co-doped with Cu and Ce ions, was prepared via the sol-gel technique and was drawn at about 2000 °C into a cylindrical capillary rod to evaluate its optical and radioluminescence properties. The sample showed optical absorption and photoluminescence (PL) bands attributed to Cu+ and Ce3+ ions. The presence of these two ions inside the host silica glass matrix was also confirmed using PL kinetics measurements. The X-ray dose rate was remotely monitored via the radioluminescence (RL) signal emitted by the Cu/Ce scintillating sensor. In order to transport the optical signal from the irradiation zone to the detection located in the instrumentation zone, an optical transport fiber was spliced to the sample under test. This RL signal exhibited a linear behavior regarding the dose rate in the range at least between 1.1 mGy(SiO2)/s and 34 Gy(SiO2)/s. In addition, a spectroscopic analysis of this RL signal at different dose rates revealed that the same energy levels attributed to Cu+ and Ce3+ ions are involved in both the RL mechanism and the PL phenomenon. Moreover, integrated intensities of the RL sub-bands related to both Cu+ and Ce3+ ions depend linearly on the dose rate at least in the investigated range from 102 mGy(SiO2)/s up to 4725 mGy(SiO2)/s. The presence of Ce3+ ions also reduces the formation of HC1 color centers after X-ray irradiation. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |