Popis: |
The aim of this work is to analyze existing detectors for the relative dosimetry of small radiation fields in external beam radiation therapy and the requirements for them, consider the problems in carrying out dosimetry of small radiation fields, determine the physical conditions under which an external photon beam can be designated as a small field. In modern radiation therapy, there is an increase in the use of small static fields, which is facilitated by the general availability of standard and optional multileaf collimators and new generation treatment machines of various designs. There is growing interest in the use of such radiation techniques as stereotactic radiosurgery, stereotactic body radiotherapy, intensity modulated radiotherapy, which are widely used small fields. This has increased the uncertainties in clinical dosimetry, especially for small fields. Accurate dosimetry of small fields is important when commissioning linear accelerators and is a difficult task, especially for very small fields used in stereotactic radiotherapy. In the course of the work, a study of topical problems in the dosimetry of small radiation fields in external beam radiation therapy has been carried out. The physical conditions under which the external photon beam can be designated as a small field are considered. A review and analysis of existing detectors for the relative dosimetry of small radiation fields, as well as an analysis of the requirements for the character. The analysis revealed that liquid ionization chambers, silicon diodes, diamond detectors, organic scintillators, radiochromic films, thermoluminescent dosimeters and optically stimulated luminescence detectors are considered suitable for relative dosimetry of small photon fields and are recommended for use in clinics where radiotherapy is performed. |