Existence, Regularity, and Uniqueness of Solutions to Some Noncoercive Nonlinear Elliptic Equations in Unbounded Domains

Autor: Patrizia Di Gironimo
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 12, p 1860 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12121860
Popis: In this paper, we study a noncoercive nonlinear elliptic operator with a drift term in an unbounded domain. The singular first-order term grows like |E(x)||∇u|, where E(x) is a vector field belonging to a suitable Morrey-type space. Our operator arises as a stationary equation of diffusion–advection problems. We prove existence, regularity, and uniqueness theorems for a Dirichlet problem. To obtain our main results, we use the weak maximum principle and the same a priori estimates.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje