Popis: |
In the fields of agriculture and forestry, the Normalized Difference Vegetation Index (NDVI) is a critical indicator for assessing the physiological state of plants. Traditional imaging sensors can only collect two-dimensional vegetation distribution data, while dual-wavelength LiDAR technology offers the capability to capture vertical distribution information, which is essential for forest structure recovery and precision agriculture management. However, existing LiDAR systems face challenges in detecting echoes at two wavelengths, typically relying on multiple detectors or array sensors, leading to high costs, bulky systems, and slow detection rates. This study introduces a time-stretched method to separate two laser wavelengths in the time dimension, enabling a more cost-effective and efficient dual-spectral (600 nm and 800 nm) LiDAR system. Utilizing a supercontinuum laser and a single-pixel detector, the system incorporates specifically designed time-stretched transmission optics, enhancing the efficiency of NDVI data collection. We validated the ranging performance of the system, achieving an accuracy of approximately 3 mm by collecting data with a high sampling rate oscilloscope. Furthermore, by detecting branches, soil, and leaves in various health conditions, we evaluated the system’s performance. The dual-wavelength LiDAR can detect variations in NDVI due to differences in chlorophyll concentration and water content. Additionally, we used the radar equation to analyze the actual scene, clarifying the impact of the incidence angle on reflectance and NDVI. Scanning the Red Sumach, we obtained its NDVI distribution, demonstrating its physical characteristics. In conclusion, the proposed dual-wavelength LiDAR based on the time-stretched method has proven effective in agricultural and forestry applications, offering a new technological approach for future precision agriculture and forest management. |