Autor: |
Willmott Devin, Murrugarra David, Ye Qiang |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Computational and Mathematical Biophysics, Vol 8, Iss 1, Pp 36-50 (2020) |
Druh dokumentu: |
article |
ISSN: |
2544-7297 |
DOI: |
10.1515/cmb-2020-0002 |
Popis: |
The problem of determining which nucleotides of an RNA sequence are paired or unpaired in the secondary structure of an RNA, which we call RNA state inference, can be studied by different machine learning techniques. Successful state inference of RNA sequences can be used to generate auxiliary information for data-directed RNA secondary structure prediction. Typical tools for state inference, such as hidden Markov models, exhibit poor performance in RNA state inference, owing in part to their inability to recognize nonlocal dependencies. Bidirectional long short-term memory (LSTM) neural networks have emerged as a powerful tool that can model global nonlinear sequence dependencies and have achieved state-of-the-art performances on many different classification problems. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|