Improving RNA secondary structure prediction via state inference with deep recurrent neural networks

Autor: Willmott Devin, Murrugarra David, Ye Qiang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Computational and Mathematical Biophysics, Vol 8, Iss 1, Pp 36-50 (2020)
Druh dokumentu: article
ISSN: 2544-7297
DOI: 10.1515/cmb-2020-0002
Popis: The problem of determining which nucleotides of an RNA sequence are paired or unpaired in the secondary structure of an RNA, which we call RNA state inference, can be studied by different machine learning techniques. Successful state inference of RNA sequences can be used to generate auxiliary information for data-directed RNA secondary structure prediction. Typical tools for state inference, such as hidden Markov models, exhibit poor performance in RNA state inference, owing in part to their inability to recognize nonlocal dependencies. Bidirectional long short-term memory (LSTM) neural networks have emerged as a powerful tool that can model global nonlinear sequence dependencies and have achieved state-of-the-art performances on many different classification problems.
Databáze: Directory of Open Access Journals