Continuous production of chitooligosaccharides in a column reactor by the PUF-immobilized whole cell enzymes of Mucor circinelloides IBT-83

Autor: Katarzyna Struszczyk-Świta, Michał Benedykt Kaczmarek, Tadeusz Antczak, Olga Marchut-Mikołajczyk
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Microbial Cell Factories, Vol 23, Iss 1, Pp 1-13 (2024)
Druh dokumentu: article
ISSN: 1475-2859
DOI: 10.1186/s12934-024-02529-4
Popis: Abstract Background Chitosan oligosaccharides (COS) have great potential for applications in several fields, including agriculture, food industry or medicine. Nevertheless, the large-scale use of COS requires the development of cost-effective technologies for their production. The main objective of our investigation was to develop an effective method of enzymatic degradation of chitosan in a column reactor using Mucor circinelloides IBT-83 cells, immobilized in a polyurethane foam (PUF). These cells serve as a source of chitosanolytic enzymes. Results The study revealed that the process of freeze-drying of immobilized mycelium increases the stability of the associated enzymes during chitosan hydrolysis. The use of stabilized preparations as an active reactor bed enables the production of COS at a constant level for 16 reactor cycles (384 h in total), i.e. 216 h longer compared to non-stabilized mycelium. In the hydrolysate, oligomers ranging in structure from dimer to hexamer as well as D-glucosamine were detected. The potential application of the obtained product in agriculture has been verified. The results of phytotests have demonstrated that the introduction of COS into the soil at a concentration of 0.01 or 0.05% w/w resulted in an increase in the growth of Lepidium sativum stem and root, respectively (extensions by 38 and 44% compared to the control sample). Conclusions The research has verified that the PUF-immobilized M. circinelloides IBT-83 mycelium, which has been stabilized through freeze-drying, is a promising biocatalyst for the environmentally friendly and efficient generation of COS. This biocatalyst has the potential to be used in fertilizers.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje