Autor: |
Serap Herdem |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
1029-242X |
DOI: |
10.1186/s13660-024-03147-9 |
Popis: |
Abstract In this paper, a modification of general linear positive operators introduced by Ibragimov and Gadjiev in 1970 is constructed. It is shown that this modification preserves exponential mappings and also contains modified Bernstein-, Szász- and Baskakov-type operators as special cases. The convergence properties of corresponding operators on [ 0 , ∞ ) $[ 0,\infty ) $ and in exponentially weighted spaces are investigated. Finally, the quantitative Voronovskaja theorem in terms of modulus of continuity for functions having exponential growth is examined. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|