Ibragimov–Gadjiev operators preserving exponential functions

Autor: Serap Herdem
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-024-03147-9
Popis: Abstract In this paper, a modification of general linear positive operators introduced by Ibragimov and Gadjiev in 1970 is constructed. It is shown that this modification preserves exponential mappings and also contains modified Bernstein-, Szász- and Baskakov-type operators as special cases. The convergence properties of corresponding operators on [ 0 , ∞ ) $[ 0,\infty ) $ and in exponentially weighted spaces are investigated. Finally, the quantitative Voronovskaja theorem in terms of modulus of continuity for functions having exponential growth is examined.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje