Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning

Autor: Christian Bock, Joan Elias Walter, Bastian Rieck, Ivo Strebel, Klara Rumora, Ibrahim Schaefer, Michael J. Zellweger, Karsten Borgwardt, Christian Müller
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Nature Communications, Vol 15, Iss 1, Pp 1-16 (2024)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/s41467-024-49390-y
Popis: Abstract Functionally relevant coronary artery disease (fCAD) can result in premature death or nonfatal acute myocardial infarction. Its early detection is a fundamentally important task in medicine. Classical detection approaches suffer from limited diagnostic accuracy or expose patients to possibly harmful radiation. Here we show how machine learning (ML) can outperform cardiologists in predicting the presence of stress-induced fCAD in terms of area under the receiver operating characteristic (AUROC: 0.71 vs. 0.64, p = 4.0E-13). We present two ML approaches, the first using eight static clinical variables, whereas the second leverages electrocardiogram signals from exercise stress testing. At a target post-test probability for fCAD of
Databáze: Directory of Open Access Journals