Autor: |
Zoi Georgiopoulou, Apostolis Verykios, Kalliopi Ladomenou, Katerina Maskanaki, Georgios Chatzigiannakis, Konstantina-Kalliopi Armadorou, Leonidas C. Palilis, Alexander Chroneos, Evangelos K. Evangelou, Spiros Gardelis, Abd. Rashid bin Mohd Yusoff, Athanassios G. Coutsolelos, Konstantinos Aidinis, Maria Vasilopoulou, Anastasia Soultati |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 13, Iss 1, p 169 (2022) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano13010169 |
Popis: |
Charge injection and transport interlayers play a crucial role in many classes of optoelectronics, including organic and perovskite ones. Here, we demonstrate the beneficial role of carbon nanodots, both pristine and nitrogen-functionalized, as electron transport materials in organic light emitting diodes (OLEDs) and organic solar cells (OSCs). Pristine (referred to as C-dots) and nitrogen-functionalized (referred to as NC-dots) carbon dots are systematically studied regarding their properties by using cyclic voltammetry, Fourier-transform infrared (FTIR) and UV–Vis absorption spectroscopy in order to reveal their energetic alignment and possible interaction with the organic semiconductor’s emissive layer. Atomic force microscopy unravels the ultra-thin nature of the interlayers. They are next applied as interlayers between an Al metal cathode and a conventional green-yellow copolymer—in particular, (poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-{2,1′,3}-thiadiazole)], F8BT)—used as an emissive layer in fluorescent OLEDs. Electrical measurements indicate that both the C-dot- and NC-dot-based OLED devices present significant improvements in their current and luminescent characteristics, mainly due to a decrease in electron injection barrier. Both C-dots and NC-dots are also used as cathode interfacial layers in OSCs with an inverted architecture. An increase of nearly 10% in power conversion efficiency (PCE) for the devices using the C-dots and NC-dots compared to the reference one is achieved. The application of low-cost solution-processed materials in OLEDs and OSCs may contribute to their wide implementation in large-area applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|