Autor: |
Konstantia Zarkogianni, Edmund Dervakos, George Filandrianos, Theofanis Ganitidis, Vasiliki Gkatzou, Aikaterini Sakagianni, Raghu Raghavendra, C. L. Max Nikias, Giorgos Stamou, Konstantina S. Nikita |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Data, Vol 10, Iss 1, Pp 1-19 (2023) |
Druh dokumentu: |
article |
ISSN: |
2052-4463 |
DOI: |
10.1038/s41597-023-02646-6 |
Popis: |
Abstract Harnessing the power of Artificial Intelligence (AI) and m-health towards detecting new bio-markers indicative of the onset and progress of respiratory abnormalities/conditions has greatly attracted the scientific and research interest especially during COVID-19 pandemic. The smarty4covid dataset contains audio signals of cough (4,676), regular breathing (4,665), deep breathing (4,695) and voice (4,291) as recorded by means of mobile devices following a crowd-sourcing approach. Other self reported information is also included (e.g. COVID-19 virus tests), thus providing a comprehensive dataset for the development of COVID-19 risk detection models. The smarty4covid dataset is released in the form of a web-ontology language (OWL) knowledge base enabling data consolidation from other relevant datasets, complex queries and reasoning. It has been utilized towards the development of models able to: (i) extract clinically informative respiratory indicators from regular breathing records, and (ii) identify cough, breath and voice segments in crowd-sourced audio recordings. A new framework utilizing the smarty4covid OWL knowledge base towards generating counterfactual explanations in opaque AI-based COVID-19 risk detection models is proposed and validated. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|