Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations

Autor: Zahra Eidinejad, Reza Saadati
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematical Biosciences and Engineering, Vol 19, Iss 7, Pp 6536-6550 (2022)
Druh dokumentu: article
ISSN: 1551-0018
DOI: 10.3934/mbe.2022308?viewType=HTML
Popis: In this paper, using the fractional integral with respect to the Ψ function and the Ψ-Hilfer fractional derivative, we consider the Volterra fractional equations. Considering the Gauss Hypergeometric function as a control function, we introduce the concept of the Hyers-Ulam-Rassias-Kummer stability of this fractional equations and study existence, uniqueness, and an approximation for two classes of fractional Volterra integro-differential and fractional Volterra integral. We apply the Cădariu-Radu method derived from the Diaz-Margolis alternative fixed point theorem. After proving each of the main theorems, we provide an applied example of each of the results obtained.
Databáze: Directory of Open Access Journals