Derivations with values in noncommutative symmetric spaces

Autor: Huang, Jinghao, Sukochev, Fedor
Jazyk: English<br />French
Rok vydání: 2023
Předmět:
Zdroj: Comptes Rendus. Mathématique, Vol 361, Iss G8, Pp 1357-1365 (2023)
Druh dokumentu: article
ISSN: 1778-3569
DOI: 10.5802/crmath.508
Popis: Let $E=E(0,\infty )$ be a symmetric function space and $E(\mathcal{M},\tau )$ be the noncommutative symmetric space corresponding to $E(0,\infty )$ associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every derivation $\delta :\mathcal{A}\rightarrow E(\mathcal{M},\tau )$ is necessarily inner for each $C^*$-subalgebra $\mathcal{A}$ in the class of all semifinite von Neumann algebras $\mathcal{M}$ as those with the Levi property.
Databáze: Directory of Open Access Journals