Autor: |
Huang, Jinghao, Sukochev, Fedor |
Jazyk: |
English<br />French |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Comptes Rendus. Mathématique, Vol 361, Iss G8, Pp 1357-1365 (2023) |
Druh dokumentu: |
article |
ISSN: |
1778-3569 |
DOI: |
10.5802/crmath.508 |
Popis: |
Let $E=E(0,\infty )$ be a symmetric function space and $E(\mathcal{M},\tau )$ be the noncommutative symmetric space corresponding to $E(0,\infty )$ associated with a von Neumann algebra with a faithful normal semifinite trace. Our main result identifies the class of spaces $E$ for which every derivation $\delta :\mathcal{A}\rightarrow E(\mathcal{M},\tau )$ is necessarily inner for each $C^*$-subalgebra $\mathcal{A}$ in the class of all semifinite von Neumann algebras $\mathcal{M}$ as those with the Levi property. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|