Notch-based gene signature for predicting the response to neoadjuvant chemotherapy in triple-negative breast cancer

Autor: Mohamed Omar, Pier Vitale Nuzzo, Francesco Ravera, Sara Bleve, Giuseppe Nicolò Fanelli, Claudio Zanettini, Itzel Valencia, Luigi Marchionni
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Journal of Translational Medicine, Vol 21, Iss 1, Pp 1-12 (2023)
Druh dokumentu: article
ISSN: 1479-5876
DOI: 10.1186/s12967-023-04713-3
Popis: Abstract Background While the efficacy of neoadjuvant chemotherapy (NACT) in treating triple-negative breast cancer (TNBC) is generally accepted, not all patients derive benefit from this preoperative treatment. Presently, there are no validated biomarkers to predict the NACT response, and previous attempts to develop predictive classifiers based on gene expression data have not demonstrated clinical utility. However, predictive models incorporating biological constraints have shown increased robustness and improved performance compared to agnostic classifiers. Methods We used the preoperative transcriptomic profiles from 298 patients with TNBC to train and test a rank-based classifier, k-top scoring pairs, to predict whether the patient will have pathological complete response (pCR) or residual disease (RD) following NACT. To reduce overfitting and enhance the signature’s interpretability, we constrained the training process to genes involved in the Notch signaling pathway. Subsequently, we evaluated the signature performance on two independent cohorts with 75 and 71 patients. Finally, we assessed the prognostic value of the signature by examining its association with relapse-free survival (RFS) using Kaplan‒Meier (KM) survival estimates and a multivariate Cox proportional hazards model. Results The final signature consists of five gene pairs, whose relative ordering can be predictive of the NACT response. The signature has a robust performance at predicting pCR in TNBC patients with an area under the ROC curve (AUC) of 0.76 and 0.85 in the first and second testing cohorts, respectively, outperforming other gene signatures developed for the same purpose. Additionally, the signature was significantly associated with RFS in an independent TNBC patient cohort even after adjusting for T stage, patient age at the time of diagnosis, type of breast surgery, and menopausal status. Conclusion We introduce a robust gene signature to predict pathological complete response (pCR) in patients with TNBC. This signature applies easily interpretable, rank-based decision rules to genes regulated by the Notch signaling pathway, a known determinant in breast cancer chemoresistance. The robust predictive and prognostic performance of the signature make it a strong candidate for clinical implementation, aiding in the stratification of TNBC patients undergoing NACT.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje