Modeling and simulation of the control system for the plane mirror rotating interferometer

Autor: Yusheng Qin, Xiangxian Li, Xin Han, Jingjing Tong, Minguang Gao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Engineering Reports, Vol 6, Iss 12, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2577-8196
DOI: 10.1002/eng2.12942
Popis: Abstract To solve the problem of optical path difference velocity (OPDV) stability in the Fourier spectrometer, a Cerebellar Model Articulation Controller‐Proportional‐Integral‐Derivative (CMAC‐PID) composite control strategy is proposed. The relationship between the angular velocity of the rotary‐type voice coil motor (RT‐VCM) and the OPDV was studied, along with a mathematical model of the parallel rotating mirror interferometer system. CMAC‐PID is designed and simulated on this basis to suppress the disturbance of nonlinear factors in the system model. The simulation results demonstrate that the steady‐state fluctuation error of the CMAC‐PID controller is 90.1% less than that of the PID controller. The experimental results indicate that compared to the PID controller, the CMAC‐PID controller improves the stability of the OPDV by 1.25%, which means that time‐varying disturbances are effectively suppressed.
Databáze: Directory of Open Access Journals