Fusing the 3’UTR of seed storage protein genes leads to massive recombinant protein accumulation in seeds

Autor: Masatake Kanai, Masaya Sugiyama, Maki Kondo, Kenji Yamada, Mikio Nishimura, Shoji Mano
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-39356-3
Popis: Abstract The demand for recombinant proteins is rising dramatically, and effective production systems are currently being developed. The production of recombinant proteins in plants is a promising approach due to its low cost and low risk of contamination of the proteins with endotoxins or infectious agents from the culture serum. Plant seeds primarily accumulate seed storage proteins (SSPs), which are transcribed and translated from a few genes; therefore, the mechanism underlying SSP accumulation has been studied to help devise ways to increase recombinant protein production. We found that the 3’UTR of SSP genes are essential for SSP accumulation and can be used in the production of recombinant proteins in Arabidopsis. Fusion of the 3’UTR of SSP genes to the 3’ ends of DNA sequences encoding recombinant proteins enables massive accumulation of recombinant proteins with enzymatic activity in Arabidopsis seeds. This method is also applicable to the production of human Interferon Lambda-3 (IFN-lambda 3), a candidate biopharmaceutical compound against hepatitis C infection. Considering the low cost and ease of protein production in Arabidopsis, as well as the rapid growth of this plant, our method is useful for large-scale preparation of recombinant proteins for both academic research and biopharmaceutical production.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje