Autor: |
Linsen Huang, Shaoyu Song, Zhongming Xu, Zhifei Zhang, Yansong He |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Sensors, Vol 20, Iss 24, p 7298 (2020) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s20247298 |
Popis: |
The acoustic imaging (AI) technique could map the position and the strength of the sound source via the signal processing of the microphone array. Conventional methods, including far-field beamforming (BF) and near-field acoustic holography (NAH), are limited to the frequency range of measured objects. A method called Bregman iteration based acoustic imaging (BI-AI) is proposed to enhance the performance of the two-dimensional acoustic imaging in the far-field and near-field measurements. For the large-scale ℓ1 norm problem, Bregman iteration (BI) acquires the sparse solution; the fast iterative shrinkage-thresholding algorithm (FISTA) solves each sub-problem. The interpolating wavelet method extracts the information about sources and refines the computational grid to underpin BI-AI in the low-frequency range. The capabilities of the proposed method were validated by the comparison between some tried-and-tested methods processing simulated and experimental data. The results showed that BI-AI separates the coherent sources well in the low-frequency range compared with wideband acoustical holography (WBH); BI-AI estimates better strength and reduces the width of main lobe compared with ℓ1 generalized inverse beamforming (ℓ1-GIB). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|