Autor: |
Mathias De Brouwer, Nicolas Vandenbussche, Bram Steenwinckel, Marija Stojchevska, Jonas Van Der Donckt, Vic Degraeve, Jasper Vaneessen, Filip De Turck, Bruno Volckaert, Paul Boon, Koen Paemeleire, Sofie Van Hoecke, Femke Ongenae |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
BMC Medical Informatics and Decision Making, Vol 22, Iss 1, Pp 1-34 (2022) |
Druh dokumentu: |
article |
ISSN: |
1472-6947 |
DOI: |
10.1186/s12911-022-01813-w |
Popis: |
Abstract Background The diagnosis of headache disorders relies on the correct classification of individual headache attacks. Currently, this is mainly done by clinicians in a clinical setting, which is dependent on subjective self-reported input from patients. Existing classification apps also rely on self-reported information and lack validation. Therefore, the exploratory mBrain study investigates moving to continuous, semi-autonomous and objective follow-up and classification based on both self-reported and objective physiological and contextual data. Methods The data collection set-up of the observational, longitudinal mBrain study involved physiological data from the Empatica E4 wearable, data-driven machine learning (ML) algorithms detecting activity, stress and sleep events from the wearables’ data modalities, and a custom-made application to interact with these events and keep a diary of contextual and headache-specific data. A knowledge-based classification system for individual headache attacks was designed, focusing on migraine, cluster headache (CH) and tension-type headache (TTH) attacks, by using the classification criteria of ICHD-3. To show how headache and physiological data can be linked, a basic knowledge-based system for headache trigger detection is presented. Results In two waves, 14 migraine and 4 CH patients participated (mean duration 22.3 days). 133 headache attacks were registered (98 by migraine, 35 by CH patients). Strictly applying ICHD-3 criteria leads to 8/98 migraine without aura and 0/35 CH classifications. Adapted versions yield 28/98 migraine without aura and 17/35 CH classifications, with 12/18 participants having mostly diagnosis classifications when episodic TTH classifications (57/98 and 32/35) are ignored. Conclusions Strictly applying the ICHD-3 criteria on individual attacks does not yield good classification results. Adapted versions yield better results, with the mostly classified phenotype (migraine without aura vs. CH) matching the diagnosis for 12/18 patients. The absolute number of migraine without aura and CH classifications is, however, rather low. Example cases can be identified where activity and stress events explain patient-reported headache triggers. Continuous improvement of the data collection protocol, ML algorithms, and headache classification criteria (including the investigation of integrating physiological data), will further improve future headache follow-up, classification and trigger detection. Trial registration This trial was retrospectively registered with number NCT04949204 on 24 June 2021 at www.clinicaltrials.gov . |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|