Influence of Pyrolysis Parameters Using Microwave toward Structural Properties of ZnO/CNS Intermediate and Application of ZnCr2O4/CNS Final Product for Dark Degradation of Pesticide in Wet Paddy Soil

Autor: Tutik Setianingsih, Danar Purwonugroho, Yuniar Ponco Prananto
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: ChemEngineering, Vol 5, Iss 3, p 58 (2021)
Druh dokumentu: article
ISSN: 2305-7084
DOI: 10.3390/chemengineering5030058
Popis: Pesticide is a pollution problem in agriculture. The usage of ZnCr2O4/CNS and H2O2 as additive in liquid fertilizer has potency for catalytic pesticide degradation. Colloid condition is needed for easy spraying. Rice husk and sawdust were used as carbon precursor and ZnCl2 as activator. The biomass–ZnCl2 mixtures were pyrolyzed using microwave (400–800 W, 50 min). The products were dispersed in water by blending then evaporated to obtain ZnO/CNS. The composites were reacted with KOH, CrCl3·6H2O, more ZnCl2, and little water by microwave (600 W, 5 min). The ZnCr2O4/CNS and H2O2 were used for degradation of buthylphenylmethyl carbamate (BPMC) in wet deactivated paddy soil. TOC was measured using TOC meter. The FTIR spectra of the ZnO/CNS composites indicated the completed carbonization except at 800 W without ZnCl2. The X-ray diffractograms of the composites confirmed ZnO/CNS structure. SEM images showed irregular particle shapes for using both biomass. ZnCr2O4/CNS structure was confirmed by XRD as the final product with crystallite size of 74.99 nm. The sawdust produced more stable colloids of CNS and ZnO/CNS composite than the rice husk. The pyrolysis without ZnCl2 formed more stable colloid than with ZnCl2. The ZnCr2O4/CNS from sawdust gave better dark catalytic degradation of BPMC than from rice husk, i.e., 2.5 and 1.6 times larger for 400 and 800 W pyrolysis, respectively.
Databáze: Directory of Open Access Journals