On the Differentiability of Weak Solutions of an Abstract Evolution Equation with a Scalar Type Spectral Operator on the Real Axis
Autor: | Marat V. Markin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 2018 (2018) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2018/4168609 |
Popis: | Given the abstract evolution equation y′(t)=Ay(t), t∈R, with scalar type spectral operator A in a complex Banach space, found are conditions necessary and sufficient for all weak solutions of the equation, which a priori need not be strongly differentiable, to be strongly infinite differentiable on R. The important case of the equation with a normal operator A in a complex Hilbert space is obtained immediately as a particular case. Also, proved is the following inherent smoothness improvement effect explaining why the case of the strong finite differentiability of the weak solutions is superfluous: if every weak solution of the equation is strongly differentiable at 0, then all of them are strongly infinite differentiable on R. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |